首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9587篇
  免费   1000篇
  国内免费   1479篇
  2023年   146篇
  2022年   122篇
  2021年   234篇
  2020年   376篇
  2019年   381篇
  2018年   315篇
  2017年   374篇
  2016年   363篇
  2015年   431篇
  2014年   458篇
  2013年   708篇
  2012年   459篇
  2011年   404篇
  2010年   401篇
  2009年   490篇
  2008年   486篇
  2007年   524篇
  2006年   469篇
  2005年   402篇
  2004年   361篇
  2003年   314篇
  2002年   297篇
  2001年   292篇
  2000年   279篇
  1999年   224篇
  1998年   187篇
  1997年   201篇
  1996年   186篇
  1995年   183篇
  1994年   173篇
  1993年   191篇
  1992年   149篇
  1991年   132篇
  1990年   107篇
  1989年   132篇
  1988年   102篇
  1987年   98篇
  1986年   96篇
  1985年   128篇
  1984年   111篇
  1983年   93篇
  1982年   82篇
  1981年   78篇
  1980年   84篇
  1979年   58篇
  1978年   50篇
  1977年   39篇
  1976年   32篇
  1975年   15篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Catch per unit effort (CPUE), length, weight and maturity data for Clarias gariepinus were collected during monthly gillnet surveys in the upper Okavango Delta between 2001 and 2009 to investigate their relationship with the annual flood-pulse. CPUE, condition factor (K) and the proportion of ripe-running fish (PRR) in the population followed a unimodal annual cycle that could be modelled using water temperature and flood-pulse hydrology. Increased CPUE during declining water levels was most likely a result of feeding migrations and aggregation behaviour. The observed increase in K during low floods in October and November preceded the increase in PRR, which increased mainly with increasing temperature but appeared less dependent on flow. This study provided quantitative evidence that the biology of fish in the Okavango Delta is mainly dependent on the annual flood regime and, therefore, that conservation efforts should be focused on maintaining natural flow patterns in the face of climate change and potential water extraction schemes upstream.  相似文献   
72.
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable.  相似文献   
73.
紫晶香蘑栽培生物学研究   总被引:3,自引:0,他引:3  
紫晶香蘑栽培生物学研究卢成英,李鹄鸣,钟以举(湖南省吉首大学生态研究所416000)BiologicalResearchonLepistasordidaCultivation.¥Luchengying;LiHuming;ZhongYiju(In-st...  相似文献   
74.
Invasion of alien plant species (IAS) represents a serious environmental problem, particularly in Europe, where it mainly pertains to urban areas. Seed germination traits contribute to clarification of invasion dynamics. The objective of this research was to analyze how different light conditions (i.e., 12-hr light/12-hr darkness and continuous darkness) and temperature regimes (i.e., 15/6°C, 20/10°C and 30/20°C) trigger seed germination of Ailanthus altissima (AA), Phytolacca americana (PA) and Robinia pseudoacacia (RP). The relationship between seed germination and seed morphometric traits was also analyzed. Our findings highlight that temperature rather than light was the main environmental factor affecting germination. RP germinated at all tested temperatures, whereas at 15/6°C seeds of AA and PA showed physiological dormancy. RP had a higher germination capacity at a lower temperature, unlike AA and PA, which performed better at the highest temperatures. Light had a minor role in seed germination of the three species. Light promoted germination only for seeds of PA, and final germination percentage was 1.5-fold higher in light than in continuous darkness. Seed morphometric traits (thickness [T], area [A] and volume [V]) had a significant role in explaining germination trait variations. The results highlight the importance of increasing our knowledge on seed germination requirements to predict future invasiveness trends. The increase in global temperature could further advantage AA and PA in terms of germinated seeds, as well as RP by enhancing the germination velocity, therefore compensating for a lower germination percentage of this species at the highest temperatures.  相似文献   
75.
Exposure of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers to 40°C for a period of 3 h results in the selective suppression of the synthesis and secretion of hydrolytic enzymes; other normal cellular protein synthesis continues during heat shock. This suppression is correlated with secretory protein mRNA destabilization and the dissociation of stacked ER lamellae during heat shock (Belanger et al. 1986, Proceedings of the National Academy of Sciences USA 83, pp. 1354–1358). In this report we examined the effect of exposure to extended periods of heat shock. If exposure to 40°C was continued for a period of 18 h, the synthesis of α-amylase, the predominant secreted hydrolase, resumed. This was accompanied by increased α-amylase mRNA levels and the reformation of ER lamellae. Though initial exposure (3 h) to 40°C reduced protein secretion to ~10% of that observed in aleurone cells maintained at 25°C, exposure for prolonged periods (16–20 h) permitted the resumption of protein secretion to ~66% of non-heat-shocked control levels. The resumption of normal secretory protein synthesis during prolonged exposure to 40°C was correlated with an increase in the incorporation of [14C]glycerol into phosphatidylcholine and an increase in the ratio of saturated to unsaturated fatty acids in lipids isolated from ER membrane preparations. Increased fatty acid saturation has been demonstrated to enhance thermostability in biological membranes, and such changes in membrane composition may be important to the recovery of secretory protein synthesis at the ER.  相似文献   
76.
Plants show remarkable developmental plasticity to survive in a continually changing environment. One example is their capability to adjust flowering time in response to environmental changes. Ambient growth temperature, which is strongly affected by global temperature changes, has a profound effect on flowering time. However, those effects have been largely ignored in research. Recent molecular genetic studies ofArabidopsis as a model system have implicated several genes, and have identified a molecular mechanism underlying the responses of plants to changes in ambient temperature. Here, we describe recent discoveries related to ambient temperature signaling and the control of flowering time inArabidopsis. We also discuss current perspectives on how plants sense and respond to such changes.  相似文献   
77.
A simple analytical model has been developed to simulate the cooling of the hands due to touching various types of cold material. The model consisted of a slab of tissue, covered on both sides with skin. The only active mechanism was the skin blood flow. The blood flow was controlled by body core temperature, mean skin temperature, and local hand temperature. The blood flowed along the palm before returning via the back of the hand. The control function was adapted from an earlier study, dealing with feet, but enhanced with a cold induced vasodilatation term. The palm of the hand was touching materials that were specified by conductivity and heat capacity. The hand was initially at a steady-state in a neutral environment and then suddenly grabbed the material. The resulting cooling curves have been compared to data from an experiment including six materials (foam, wood, nylon, steel, aluminium and metal at a constant temperature), three temperatures (-10, 0, and 10 degrees C), two thermal states of the body (neutral and 0.4 degrees C raised), and with and without gloves. There was a fair general agreement between the model and the experiment but the model failed to predict three specific effects: the unequal effect of equal 10 degrees C steps in cold surface temperature on the temperature of the palm of the hand, the cooling effect of nylon, and the rapid drop in back of the hand temperature. Nevertheless the overall regression was 0.88 with a standard deviation between model and experiment of about 2.5 degrees C.  相似文献   
78.
1. Temperature and oxygen are recognised as the main drivers of altitudinal limits of species distributions. However, the two factors are linked, and both decrease with altitude, why their effects are difficult to disentangle. 2. This was experimentally addressed using aquatic macroinvertebrates; larvae of Andesiops (Ephemeroptera), Claudioperla, (Plecoptera), Scirtes (Coleoptera) and Anomalocosmoecus (Trichoptera), and the amphipod Hyalella in an Ecuadorian glacier‐fed stream (4100–4500 m a.s.l.). The following were performed: (i) quantitative benthic sampling at three sites to determine altitudinal patterns in population densities, (ii) transplants of the five taxa upstream of their natural altitudinal limit to test the short‐term (14 days) effect on survival, and (iii) in situ experiments of locomotory activity as a proxy for animal response to relatively small differences in temperature (5 °C vs. 10 °C) and oxygen saturation (55% vs. 62%). 3. The transplant experiment reduced survival to a varying degree among taxa, but Claudioperla survived well at a site where it did not naturally occur. In the in situ experiment, Scirtes and Hyalella decreased their activity at lower oxygen saturation, whereas Andesiops and Anomalocosmoecus did so at a low temperature. The decrease in activity from a high to a low temperature and oxygen for the five taxa was significantly correlated with their mortality in the transplant experiment. 4. Together the present experiments indicate that even relatively small differences in temperature and oxygen may produce effects explaining ecological patterns, and depending on the taxon, either water temperature or oxygen saturation, without clear interacting effects, are important drivers of altitudinal limits.  相似文献   
79.
Air temperature and relative humidity have long been suspected of affecting the performance of marathon runners. Though these factors are important in their extremes, we show that other factors are even more indicative of race performances. Performances of the top 3 finishers in the last 30 Boston Marathons were correlated with hourly meteorological data for each race day. These 90 individual performances were classified as: record breaking performances (31), average performances (35), and unusually slow performances (24). The factors that help predict record breaking and unusually slow performances are: (i) wet bulb temperature, (ii) percent sky cover, and (iii) presence or absence of a light precipitation. Record breaking performances are characterized by a wet bulb temperature of <7.8°C, and 100% sky cover. A light drizzle is also conducive to better performances. On the other hand, unusually low performances are accompanied by a wet bulb temperature of >7.8°C, and a sky cover of 50% or less. No light, precipitation was recorded on any of the unusually slow race days. A graphic analysis clearly shows these relationships to exist. In addition, a multiple regression analysis confirms the importance of these variables. The authors advise that these are reliable predictors; however, when considering marathon races held in various geographical regions and differing climatic regimes, the exact numerical thresholds used here may not apply.  相似文献   
80.
Arbuscular mycorrhizal (AM) symbioses are a potentially important link in the chain of response of ecosystems to elevated atmospheric [CO2]. By promoting plant phosphorus uptake and acting as a sink for plant carbon, they can alleviate photosynthetic down-regulation. Because hyphal turnover is likely to be fast, especially in warmer soils, they can also act as a rapid pathway for the return of carbon to the atmosphere. However, most experiments on AM responses to [CO2] have failed to take into account the difference in growth of mycorrhizal and non- mycorrhizal plants; those that have done so suggest that AM colonization of roots is little altered by [CO2], although this issue remains to be resolved. Very little is known about the effects of other factors of global environmental change on mycorrhizas. These issues need urgent attention. It is also necessary to understand the potential for the various AM fungal taxa to respond differentially to environmental changes, including carbon supply and soil temperature and moisture, especially because of the differential abilities of plant and fungal species to migrate in response to changing environments. Indeed, there is a need for a new approach to the study of mycorrhizal associations, which has been too plant-centred. It is essential to regard the fungus as an organism itself, and to understand its biology both as an entity and as part of a symbiosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号